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1 ABLATIONS

1.1 Angular Gaussian vs. MLP
In Fig. 3, we replace the appearance function with an MLP of {30,

100, 600, 100, 30}. The input of the MLP are 𝝎𝑖 ,𝝎𝑜 and a 32D latent

vector, and the output is a shading color. This MLP is pre-trained on

100 SGGX BRDFs with random parameters [Heitz et al. 2015]. As

shown in the figure, Solely using a dedicated appearanceMLP fails to

model complex all-frequency appearance, unlike our representation.

1.2 Shadow Splatting vs. MLP
We train our representation without using the shadow splatting

process (Sec. 4.2 in our paper), and directly adopt the refinement

MLP alone to represent the shadow function. As shown in the figure,

a pure MLP-based approach does not produce high-quality shadows

as ours. Moreover, such an approach is prone to over-fitting (i.e.,

less generalizable than shadow splatting).

1.3 Shadow Refinement
We train our representation using the shadow value directly com-

puted from splatting without the refinement MLP (Sec. 4.2 in our

paper). As shown in Fig. 3, while the main features are preserved,

the shadows are not as detailed as our pipeline with the refinement

step.

1.4 MLP for Other Effects
We train our representation with the MLP for approximating other

effects removed (Sec. 4.3 in our paper). In Fig. 3, we can observe

noisy results where effects like interreflections should be presented.

Other components in the representation tend to compensate for the
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Table 1. Ablation studies of components in our represenetation. We list the
average quantitative errors in SSIM, PSNR and LPIPS of all synthetic scenes
to quantify the impact of ablated components. Our choices for individual
components are shown in bold.

Ablation Variant SSIM↑ PSNR↑ LPIPS↓
Full 0.9715 31.39 0.0355

w/o shadow splatting 0.9661 29.93 0.0391

w/o Φ (shadow refining) 0.9514 28.03 0.0556

w/o Ψ (other effects) 0.9707 31.30 0.0366

1 basis angular Gaussians 0.9655 29.70 0.0407

2 basis angular Gaussians 0.9694 30.93 0.0377

4 basis angular Gaussians 0.9709 31.25 0.0363

8 basis angular Gaussians 0.9715 31.39 0.0355

16 basis angular Gaussians 0.9721 31.50 0.0350

500 images 0.9670 30.61 0.0390

1,000 images 0.9698 31.09 0.0370

2,000 images 0.9715 31.39 0.0355

effects that would have been modeled by this missing MLP, making

it more prone to over-fitting.

1.5 Number of Basis Angular Gaussians
In Fig. 1, we evaluate the impact of the number of basis angular

Gaussians on a specific scene. And Tab. 1 lists the quantitative

scores averaged over all synthetic objects/scenes. Note that the

qualitative differences are more obvious in the figure, compared

with the differences in average scores in the table. Our current

selection of 8 is made after balancing under- and over-fitting of

appearance.

1.6 Number of Input Images
Fig. 2 evaluates the impact of input image number. And the average

errors are also reported in Tab. 1. More input images improve the

reconstruction quality, due to more sampling in the view/lighting

domain. We observe that it requires less input images to faithfully

reconstruct scenes with simple geometry and appearance (e.g., Hot-

dog) than more complex ones.

2 METRICS
We report detailed quantitative metrics here, due to the limited space

in the main paper. First, Tab. 2 lists the errors of the comparison

experiments with alternative approaches that take in environment-

lit input images (corresponding to Fig. 12 in the main paper). Next,

Tab. 3 reports the errors of the comparisons with [Zeng et al. 2023],
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Ground-Truth 16 Angular Gaussians 8 Angular Gaussians 4 Angular Gaussians 2 Angular Gaussians 1 Angular Gaussians

SSIM | PSNR | LPIPS 0.9557 | 28.22 | 0.0618 0.9545 | 28.04 | 0.0628 0.9521 | 27.80 | 0.0649 0.9497 | 27.64 | 0.0674 0.9459 | 27.25 | 0.0710

Fig. 1. Impact of the number of angular Gaussians. From the left image to right, the ground-truth, results from our representations trained with different
numbers of basis angular Gaussians. Average errors in SSIM, PSNR and LPIPS are reported at the bottom of each related image.

Table 2. Quantitative metrics corresponding to Fig. 12 in the main paper.
We list the quantitative errors in SSIM, PSNR and LPIPS.

Scene Method SSIM↑ PSNR↑ LPIPS↓

Hotdog

GaussianShader 0.9439 29.25 0.0600

GS-IR 0.9289 29.13 0.0816

Relightable3DGaussian 0.9526 30.22 0.0555

TensoIR 0.9590 31.68 0.0466

Ours 0.9712 36.47 0.0342

Lego

GaussianShader 0.8964 24.33 0.0834

GS-IR 0.9230 27.66 0.0550

Relightable3DGaussian 0.9463 30.31 0.0446

TensoIR 0.9540 30.96 0.0356

Ours 0.9651 32.06 0.0302

MaterialBalls

GaussianShader 0.8900 24.31 0.0937

GS-IR 0.8756 23.41 0.0969

Relightable3DGaussian 0.9045 25.34 0.0848

TensoIR 0.9026 25.05 0.0765

Ours 0.9459 28.01 0.0508

Table 3. Per-object/scene quantitative comparison with NRHints [Zeng et al.
2023] (corresponding to Fig. 9 in the main paper). We list the quantitative
errors in SSIM, PSNR and LPIPS.

Scene Method SSIM↑ PSNR↑ LPIPS↓

Drums

NRHints 0.9745 29.88 0.0294

Ours 0.9714 30.45 0.0276

FurBall

NRHints 0.9522 35.06 0.0777

Ours 0.9669 35.34 0.0534

Lego

NRHints 0.9583 29.90 0.0393
Ours 0.9511 30.19 0.0468

Fish

NRHints 0.9140 31.28 0.1137

Ours 0.9252 31.13 0.0866

Cluttered

NRHints 0.9280 29.61 0.0879

Ours 0.9521 30.82 0.0696

Cat

NRHints 0.8560 27.34 0.1667

Ours 0.8981 26.43 0.1381

Table 4. Per-object/scene quantitative errors of our approach for all syn-
thetic and captured examples.

Scence SSIM PSNR LPIPS

AnisoMetal 0.9494 27.25 0.0462

Drums 0.9714 30.45 0.0276

FurBall 0.9669 35.34 0.0534

Hotdog 0.9733 32.98 0.0295

Lego 0.9511 30.19 0.0468

Translucent 0.9740 32.34 0.0318

Cup 0.9905 32.74 0.0203

Egg 0.9833 31.84 0.0257

Fabric 0.9812 31.15 0.0317

MaterialBalls 0.9545 28.04 0.0628

Tower 0.9913 32.96 0.0150

Boot 0.8980 28.84 0.1013

Container 0.9745 36.65 0.016

Fox 0.9225 34.21 0.0745

Li’lOnes 0.9809 38.61 0.0182

Nefertiti 0.956 36.58 0.0434

Zhaojun 0.9321 32.08 0.1071

Ground-Truth 500 1,000 2,000

SSIM | PSNR | LPIPS 0.9689 | 31.30 | 0.0327 0.9715 | 32.30 | 0.0308 0.9733 | 32.98 | 0.0295

SSIM | PSNR | LPIPS 0.9383 | 26.20 | 0.0530 0.9457 | 26.95 | 0.0483 0.9494 | 27.25 | 0.0462

Fig. 2. Impact of the number of training images. From the left column to
right, the ground-truths, and reconstruction results trained with 500, 1,000
and 2,000 images. Average errors in SSIM, PSNR and LPIPS are reported at
the bottom of each related image.
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SSIM | PSNR | LPIPS 0.9511 | 30.19 | 0.0468 0.9272 | 26.03 | 0.0637

Fig. 3. Ablation studies on components of our pipeline. From the left col-
umn to right, the ground-truth, our results and results from the variants.
From the top row to bottom, solely using an MLP as appearance function,
removing shadow refinement step, removing the modeling of other effects,
and removing shadow splatting and directly resorting to an MLP. Average
errors in SSIM, PSNR and LPIPS are reported at the bottom of each related
image.

Cup Hotdog Lego Furball

Fig. 4. Visualization of the normals of spatial Gaussians in additional scenes.
Each spatial Gaussian is splatted with the pseudo color of its normal.

the best-quality method that takes in point-lit input images (cor-

responding to Fig. 9 in the main paper). Finally, Tab. 4 shows the

errors for each synthetic and captured object/scene in this paper

(corresponding to Fig. 5 and 11 in the main paper). Please refer to

Sec. 5 for more details about the objects/scenes.

3 VISUALIZATION
In addition to Fig. 8 of the main paper, here we visualize of the

normals of spatial Gaussians for additional scenes in Fig. 4.
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