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Fig. 1. From 500-2,000 multi-view one-light-at-a-time (OLAT) input photographs, we train a representation consisting of spatial and angular Gaussians, for
real-time, high-quality novel lighting-and-view synthesis. The reconstructions of a number of challenging objects with complex geometry and appearance are
shown above. Please refer to the accompanying video for animated results with varying lighting and view conditions. We achieve a training time of 40-70
minutes and a rendering speed of 90 frames per second on a single commodity GPU.

We present a spatial and angular Gaussian based representation and a triple

splatting process, for real-time, high-quality novel lighting-and-view synthe-

sis from multi-view point-lit input images. To describe complex appearance,

we employ a Lambertian plus a mixture of angular Gaussians as an effective

reflectance function for each spatial Gaussian. To generate self-shadow, we

splat all spatial Gaussians towards the light source to obtain shadow values,

which are further refined by a small multi-layer perceptron. To compen-

sate for other effects like global illumination, another network is trained to

compute and add a per-spatial-Gaussian RGB tuple. The effectiveness of our

representation is demonstrated on 30 samples with a wide variation in geom-

etry (from solid to fluffy) and appearance (from translucent to anisotropic),

as well as using different forms of input data, including rendered images

of synthetic/reconstructed objects, photographs captured with a handheld

camera and a flash, or from a professional lightstage. We achieve a training

time of 40-70 minutes and a rendering speed of 90 fps on a single commod-

ity GPU. Our results compare favorably with state-of-the-art techniques in

terms of quality/performance.
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1 INTRODUCTION
Realistically reproducing the look of a physical object at different

view and lighting conditions in the virtual world has been a long-

standing problem in computer graphics and computer vision. It

is critical in various applications, including cultural heritage, e-

commerce and visual effects.

Digital representation of shape and appearance plays a key role

in this task. Traditional representations like 3D surface mesh and

parametric spatially-varying bidirectional reflectance distribution

function (SVBRDF) are widely used in both academia and indus-

try [Dorsey et al. 2010]. However, they are inherently difficult to

jointly optimize with respect to input photographs, therefore often

leading to suboptimal results. In the past five years, implicit rep-

resentations, such as Neural Radiance Fields (NeRF) [Mildenhall

et al. 2020], demonstrate extraordinary ability in high-quality novel

view synthesis, and even relighting [Jin et al. 2023; Lyu et al. 2022;

Zeng et al. 2023]. But these techniques often suffer from expensive

training computation and/or slow rendering speed, limiting their

applications in practice.

Recently, 3D Gaussian Splatting (GS) [Kerbl et al. 2023] gains

tremendous popularity in high-quality and efficient reconstruc-

tion of Lambertian-dominant objects/scenes baked with static light-

ing, by essentially upgrading to a differentiable tile-based splat-

ting method. Considerable research efforts [Gao et al. 2023; Jiang

et al. 2023; Liang et al. 2023b; Saito et al. 2023] are made to ex-

tend GS towards novel lighting-and-view synthesis. However, high-

quality relighting remains challenging, as complex appearance like
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anisotropic reflectance is not modeled, and the shading computation

is usually confined to surface geometry only.

In this paper, we present a novel representation based on spa-

tial and angular Gaussians along with a triple splatting process,

for real-time, high-quality novel lighting-and-view synthesis from

around 500-2,000 multi-view input images, lit with one point light

at a time. To describe complex appearance, we replace the spheri-

cal harmonics (SH) associated with each vanilla spatial Gaussian

with a Lambertian and a mixture of angular Gaussians (a differ-

entiable anisotropic spherical Gaussian modified from [Saito et al.

2023; Xu et al. 2013]), essentially representing a microfacet normal

distribution (i.e., 1
st
splatting). To efficiently support self-shadow,

we splat all spatial Gaussians toward the light source, by reusing

the same high-performance pipeline as the original screen-space

splatting (i.e., 2
nd

splatting). To compensate for other effects like

global illumination, we employ an additional multi-layer perceptron

(MLP) to compute a RGB tuple for each spatial Gaussian. The above

three factors are splatted to the camera and mixed to produce an

image (i.e., 3
rd

splatting), whose difference with a corresponding

input photograph drives the optimization of our representation in a

end-to-end, fully differentiable manner.

The effectiveness of our representation is demonstrated on sam-

ples with a wide variation in geometry and appearance. With a

modest increase in footprint and training/runtime computation

compared with GS, we obtain high-performance and -quality syn-

thesis results under novel lighting and view conditions. These results

compare favorably with state-of-the-art techniques in terms of qual-

ity/performance. Our representation can handle a wide spectrum of

input data, including rendered images of synthetic/reconstructed

objects, as well as photographs captured with a smartphone and

a flash, or from a professional lightstage. Our code and data are

publicly available at https://GSrelight.github.io/.

2 RELATED WORK
Below we review the most relevant work mainly in chronological

order. While some existing papers require additional lighting es-

timation/decoupling, we would like to emphasize that this paper

focuses on a general relightable representation only. We assume

that the lighting is known or calibrated, and can work well with a

wide spectrum of input data, from synthetic images to photographs

captured with a low-end camera or a high-end lightstage. Interested

readers are referred to excellent recent surveys for a broader view

of the topic [Fei et al. 2024; Tewari et al. 2022; Wu et al. 2024].

2.1 Traditional Relighting
While widely deployed in practice, traditional representations, such

as 3D surface mesh and parametric SVBRDF which varies with

location, view and lighting directions, are challenging to optimize

jointly. The majority of existing work performs separate estimations

of shape and appearance, the latter of which is typically represented

as attributes defined on a known 3D geometry. Dense lights are

used to remove adversarial effects like strong specular reflections

to enable geometry reconstruction with multi-view stereo, prior to

reflectance estimation [Kang et al. 2019; Tunwattanapong et al. 2013].

Zhou et al. [2013] recover a 3D shape from multi-view photometric

cues, and then compute isotropic surface reflectance. Structured

illumination is adopted to recover highly precise surface geometry,

after which the appearance is computed [Holroyd et al. 2010; Xu

et al. 2023]. Despite training an image-space neural renderer [Gao

et al. 2020; Philip et al. 2021], both methods learn to relight using

buffers rendered with fixed, non-optimizable geometry. Due to the

difficulty in performing an end-to-end, joint optimization of shape

and appearance, the result quality of the above work is limited: once

computed, errors in geometric estimation cannot be easily fixed,

and may contaminate the subsequent appearance reconstruction.

On the other hand, few exception papers try to conduct a highly

involved optimization that alternates between solving for shape and

reflectance [Nam et al. 2018; Wu et al. 2015; Xia et al. 2016]; the

latter two even solve for unknown environment lighting. However,

due to the non-differentiable nature of directly optimizing common

traditional representations, approximations/tricks have to be applied

from one place to another. Therefore, the result quality is still not

satisfactory. It is not even clear if the optimization converges.

2.2 Neural Relighting
With the advances in deep learning, neural implicit representations

and/or modern large-scale optimization tools make it possible to

jointly solve for geometry and appearance in a fully differentiable,

end-to-end fashion. Compared with traditional relighting, direct

optimization with respect to input photographs leads to higher

quality results. Implicit representations like NeRF [Mildenhall et al.

2020] demonstrate unprecedented quality in novel view synthesis.

And considerable research efforts are made to extend the idea to

relighting [Bi et al. 2020; Munkberg et al. 2022; Sun et al. 2021;

Zhang et al. 2021b]. Due to the space limit, below we briefly review

representative approaches.

One class of existing work takes images under unknown envi-

ronment lighting(s) as input, and has to deal with the fundamen-

tal lighting-material ambiguity. These methods typically integrate

approximate physical-based rendering (PBR), along with various

regularization to better condition the optimization. Boss et al. [2021]

assume spatial coherence and jointly optimize a compressed latent

BRDF space. Zhang et al. [2021a] employ a homogeneous specular

appearance. Both methods ignore occlusion and indirect illumina-

tion. Extending from surface BRDFs, a MLP-predicted microflake

volume is proposed in [Zhang et al. 2023]. Jin et al. [2023] calculate

visibility from the volume transmittance in a Siamese radiance field,

and consider second-bounce illumination. A pre-trained neural ren-

derer is proposed in [Liang et al. 2023a], as a neural approximation

of the explicitly PBR rendering equation. Lyu et al. [2022] incor-

porate PBR prior by bootstrapping light transport modeling with

synthesized OLAT images as training data, and refine the result with

captured photographs. The shape and appearance are not optimized

in tandem.

Another class of work directly takes photographs captured with

known/calibrated lighting conditions as input. Srinivasan et al. [2021]
train MLPs to predict fields of volumetric density, surface normal,

material parameters, intersection, and visibility, which are jointly

optimized via inverse rendering. Yu et al. [2023] employ a neural
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scattering function that approximates radiance transfer from a dis-

tant light, with OLAT input images. Recently, Zeng et al. [2023]

improve over [Gao et al. 2020] with a neural implicit radiance rep-

resentation, and add shadow and highlight hints to help a network

to model high frequency light transport effects. A hybrid point-

volumetric representation is proposed in concurrent work [Chung

et al. 2024] for efficient inverse rendering. Due to hard visibility

thresholding, transparent/furry objects are not supported.

While most state-of-the-art neural techniques can produce high-

quality results, both the training and rendering costs are substan-

tially more expensive than, e.g., GS-based methods. And it is non-

trivial to directly apply the ideas here to GS, due to the considerable

differences between the representations.

2.3 Gaussian-Splatting-Based Relighting
Recently, 3D Gaussian Splatting [Kerbl et al. 2023] introduces a

highly efficient differentiable rasterization pipeline for a Gaussian-

based representation, substantially improving the training time and

runtime performance. Low-order SH is employed in each vanilla

Gaussian to represent Lambertian-dominant appearance variations

under a fixed environment lighting. Several approaches replace SH

with higher-frequency functions to improve the view-dependent

synthesis quality, which, however, cannot support lighting change

[Malarz et al. 2023; Yang et al. 2024; Ye et al. 2024].

Towards the goal of relighting with more complex, general ap-

pearance, a number of techniques have been proposed. Similar to

neural relighting, the majority of related work here takes images

under an unknown environment lighting as input [Gao et al. 2023;

Jiang et al. 2023; Liang et al. 2023b; Shi et al. 2023]. The basic idea

is to model the appearance for each 3D Gaussian as an isotropic

parametric BRDF, precompute or ray-trace the visibility, sample

indirect illumination and store as low-frequency SH, and perform

inverse rendering. All these methods require well defined surface
normals to properly regularize their optimizations, which limits the

applicable geometry to opaque ones with clear boundaries.

Another line of work takes images captured with varying light

sources as input. Saito et al. [2023] propose a relightable head avatar.

For each 3D Gaussian, the specular reflectance is modeled as a

single learnable isotropic spherical Gaussian, and the light visibility

is computed from a neural network.

All the above work for general objects/scenes does not handle

challenging appearance such as anisotropic reflections, with the

exception of specialized models (e.g., [Luo et al. 2024] for hair).

Their relighting quality is limited, when compared with latest neu-

ral relighting approaches (e.g., [Zeng et al. 2023]). In comparison,

we present the first general GS-based relightable representation

for complex geometry and appearance. Unlike the aforementioned

work, we do not rely on any regularizations/strong priors in the

optimization (e.g., we do not require well defined surface normals),

which can be fragile in handling complex cases. Our quality is com-

parable to or higher than state-of-the-art neural relighting, while

our computation is substantially more efficient, by exploiting the

differentiable rasterization pipeline of GS.

3 PRELIMINARIES
Our pipeline builds upon the highly efficient GS [Kerbl et al. 2023].

Similarly, we represent the geometry with anisotropic 3D Gaussians

(or spatial Gaussians in this paper), whose density at a 3D location

p is defined as:

𝐺spa (p) = exp(−1

2

(p − 𝝁)⊤Σ−1 (p − 𝝁)) . (1)

Here 𝝁 is the 3D center of the Gaussian, and Σ is a covariance matrix

Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 , where 𝑆 is a scaling matrix and 𝑅 is a rotation matrix.

Each spatial Gaussian is associated with an opacity 𝛾 𝑗 and a color

c𝑗 . To generate an image, the spatial Gaussians are projected to the

screen as 2D Gaussian splats. Then, for each pixel, its intersecting

Gaussian splats are sorted and alpha-blended as follows:

𝜻 =
∑︁
𝑗

c𝑗 𝛽 𝑗𝛾 𝑗𝑇𝑗 , (2)

𝑇𝑗 =

𝑗−1∏
𝑘=0

(1 − 𝛽𝑘𝛾𝑘 ). (3)

Here 𝜻 is the final color of the current pixel, 𝑇𝑗 is the cumulative

opacity for the top-most 𝑗 Gaussian splats, and 𝛽𝑘 is the density at

the current pixel center of the k-th Gaussian splat.

4 OUR APPROACH
We take photographs of an object/scene from different calibrated

views, lit with one point light at a time as input, and output a set

of spatial Gaussians to represent the geometry, each of which is

associated with an opacity and an appearance function, mainly

represented as a linear combination of angular Gaussians.

To efficiently render an image under a point light, a deferred

shading approach is adopted. First, we color each spatial Gaussian

by evaluating its appearance function, and splat them into a shading
image (Sec. 4.1). Next, for each spatial Gaussian, we compute a

shadow value by splatting all of them towards the light (which we

call shadow splatting), and refine it with an MLP. We color each

spatial Gaussian with its own shadow value, and splat them into

a shadow image (Sec. 4.2). Finally, we color each spatial Gaussian

with another MLP that represents unhandled effects like global

illumination, and splat them into a residual image (Sec. 4.3). The
final rendering result is computed by multiplying the shading image

with the shadow one, and adding the residual image, on a per-pixel

basis. Please refer to Fig. 2 for a graphical illustration.

For training, an end-to-end, joint optimization of spatial Gaus-

sians and corresponding appearance functions are performed. Sim-

ilar to vanilla GS, it minimizes the differences between the input

photographs and our rendering. Adaptive density control in GS is

also applied.

4.1 Shading
To accurately represent complex appearance (e.g., anisotropic re-

flections), we replace for each spatial Gaussian the low-order SH as

defined in vanilla GS with a view- and lighting-dependent function

𝑓 as:

𝑓 (𝝎′
𝑖 ,𝝎

′
𝑜 ) = 𝜌𝑑 𝑓𝑑 (𝝎′

𝑖 ) + 𝜌𝑠 𝑓𝑠 (𝝎′
𝑖 ,𝝎

′
𝑜 ) . (4)
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Fig. 2. Our deferred-shading-based pipeline. First, we color each spatial Gaussian by evaluating its appearance function, defined as a Lambertian plus a linear
combination of basis angular Gaussians, and splat into a shading image. Next, for each spatial Gaussian, we compute a shadow value by splatting all of them
towards the light (i.e., shadow splatting), and refine it with an MLP. We color each spatial Gaussian with its shadow value, and splat them into a shadow
image. Finally, we color each spatial Gaussian with another MLP that represents unhandled effects like global illumination, and splat them into a residual
image. The final rendering result is computed by multiplying the shading image with the shadow one, and adding the residual image, on a per-pixel basis.

Here 𝜌𝑑 /𝜌𝑠 is the diffuse/specular albedo, 𝑓𝑑 /𝑓𝑠 is the diffuse/specular

appearance function to be defined in the remainder of this subsec-

tion, and 𝝎′
𝑖
/𝝎′

𝑜 is the local lighting/view direction, respectively.

The learnable shading frame at a spatial Gaussian is defined as [n,
t, b], which, as the name suggests, consists of normal, tangent and

binormal. In practice, we do not explicit store the three vectors.

Instead, we use a unit quaternion to express an equivalent rotation

transform from the world space to the shading frame of a particular

Gaussian. Note that the shading frame is totally independent from

the 3 axes of the spatial Gaussian (represented in Σ).
To generate a shading image, we color each spatial Gaussian by

evaluating 𝑓 , and then perform splatting. Below we describe the

details about 𝑓𝑑 and 𝑓𝑠 .

Diffuse Appearance. We modify a common cosine-weighted

Lambertian function to the following function 𝑓𝑑 :

𝑓𝑑 (𝝎′
𝑖 ) =

ELU(n′ · 𝝎′
𝑖
) + 𝜀 (1 − 1

𝑒 )
(1 + 𝜀 (1 − 1

𝑒 ))𝜋
. (5)

Here n′ is the normal in the shading frame, and we set the hyper-

parameter of ELU and 𝜀 as 0.01. Note that 𝑓𝑑 is slightly different

from the standard definition, and its gradient is non-zero for any 𝝎′
𝑖
,

which is amenable for differentiable optimization. In comparison,

the original cosine-weighted Lambertian has a zero gradient over

the lower hemisphere, which would form a "dead zone" once the

optimization gets stuck there.

Specular Appearance. To represent complex all-frequency spec-

ular appearance, we model 𝑓𝑠 as a mixture of modified anisotropic

spherical Gaussians (denoted as angular Gaussians in this paper)

below:

𝑓𝑠 (𝝎′
𝑖 ,𝝎

′
𝑜 ) =

∑︁
𝑗

𝛼 𝑗𝐺ang, 𝑗 (h′), (6)

where 𝛼 𝑗 is a weight, and h′ is the half vector computed as h′ =
𝝎′

𝑖+𝝎′
𝑜

∥𝝎′
𝑖
+𝝎′

𝑜 ∥ . 𝐺ang, 𝑗 is an angular Gaussian, defined as:

𝐺ang (h′) =
1

𝜎𝑧
exp

©«−
1

2

©«
arccos(h′ · z)

√︃
( s′ ·x𝜎𝑥

)2 + ( s
′ ·y
𝜎𝑦

)2

𝜎𝑧

ª®®¬
2ª®®¬ . (7)

Here [x, y, z] is the local frame of the angular Gaussian, s′ is the
normalized result of the projection of h′ onto the x-y plane, and

𝜎𝑥 /𝜎𝑦/𝜎𝑧 are the standard deviations in three dimensions. Note that

we extend the isotropic definition in [Saito et al. 2023] with [Xu

et al. 2013] to support anisotropy. Directly employing the definition

from [Xu et al. 2013] often cannot model highly specular reflections

well, and its smooth term is unfriendly to differentiable optimization,

according to [Saito et al. 2023] and our pilot study. We call the

evaluation of Eq. 6 as angular Gaussian splatting, as it involves the
mixing of multiple Gaussians.

Furthermore, for a particular object/scene, a set of the basis an-

gular Gaussians are shared across all spatial Gaussians, essentially

exploiting the spatial coherence to better condition the optimization,

as common in related work [Chen et al. 2014; Lensch et al. 2003;

Nam et al. 2018]. Consequently, for each spatial Gaussian, the com-

plete set of learnable parameters to represent an 𝑓 consist of [n, t, b],
[x, y, z], [𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧], 𝜌𝑑 , 𝜌𝑠 , and the set of weights {𝛼 𝑗 } to linearly

combine the shared basis angular Gaussians, whose total number

is 8 in main experiments. Note that when the input appearance

information is sufficient to condition our optimization [Ma et al.

2021; Tunwattanapong et al. 2013], it is possible to use a separate set

of angular Gaussians for each spatial Gaussian, instead of sharing

them, to further improve the result quality.
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4.2 Shadowing
The shading image does not account for any shadowing effects. To

support them, a naïve but expensive method would trace a shadow

ray from a scene point to the point light, and perform a line in-

tegral of opacity along the way as the final visibility result with

respect to the light. To develop an efficient algorithm for shadow

computation on Gaussians, we observe that traditional shadow map-

ping [Williams 1978] reuses the high-performance rasterizaiton

pipeline for the view from the light instead of the camera. Here

we apply a similar idea, by performing high-performance Gaussian

splatting towards the point light. Please see Fig. 3 for an illustration.
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𝑇𝑚2
= 0.6

𝑇 =
∑
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𝑚 𝛽𝑚

= 0.42 𝑇 ′ = 0.40

Fig. 3. Shadow computation. We first splat all spatial Gaussians towards the
light source, and compute the accumulated opacity𝑇𝑚 and the density 𝛽𝑚

at each intersection with each shadow ray (left). For each spatial Gaussian,
all of its𝑇𝑚 with respect to different shadow rays are weighted-averaged by
corresponding 𝛽𝑚 to obtain a shadow value𝑇 (center). Next, this shadow
value is refined with a small MLP. Finally, Gaussians with refined shadow
values (𝑇 ′) are splatted towards the camera to produce the shadow image
(right). The above Gaussians may appear incorrectly, when viewed in a
program other than Adobe Acrobat.

Specifically, we first splat all spatial Gaussians towards the point

light, by setting up a perspective camera whose center is the light,

similar to how a shadow map is computed (i.e., shadow splatting).

Here we use the same image resolution as an input image. For a

shadow ray (with an index of 𝑚), a number of spatial Gaussians

whose 2D splats intersecting the ray are sorted, according to the

distances to the light. Next, we compute the cumulative opacity 𝑇𝑚 ,

according to Eq. 3, for an intersecting spatial Gaussian as its shadow

value.

Note that the 2D splat of a spatial Gaussian is likely to intersect

a number of shadow rays, with multiple shadow values computed

at each ray. In this case, we compute an average 𝑇 =

∑
𝑚 𝛽𝑚𝑇𝑚∑
𝑚 𝛽𝑚

as

the result, weighted by 𝛽𝑚 , the projected 2D Gaussian density at an

intersection. Similar to shadow mapping, we apply a shadow bias

of 0.015 to alleviate "z-fighting".

To further improve the shadow quality (e.g., denoise), we refine for

each spatial Gaussian its shadow value with an MLP, Φ, as follows:

𝑇 ′ = Φ(𝑇,𝝎𝑖 ; 𝝁, l). (8)

Here 𝑇 /𝑇 ′
is the shadow value before/after neural refinement, re-

spectively. In addition, Φ is a small 3-layer MLP with {32, 32, 32}.

Each hidden layers is followed by a leaky ReLU activation, while

the output layer a sigmoid one. The parameter 𝝁 (i.e., the spatial

Gaussian center) is designed to make the MLP spatial aware, and

the learnable l is a per-spatial-Gaussian 6D latent vector. We apply

4-band positional encoding to 𝝁 and 𝝎𝑖 before sending to Φ. Finally,

we color each spatial Gaussian with its refined shadow value, and

splat into a shadow image.

4.3 Other Effects
To consider other light transport not modeled in Sec. 4.1 & 4.2 (e.g.,

global illumination), we employ another MLP, Ψ(𝝎𝑜 ; 𝝁, l), to predict
the impact of these effects for each spatial Gaussian. Specifcically,

Ψ is a 3-layer MLP with {128, 128, 128}. Each hidden layer is fol-

lowed by a leaky ReLU activation, while the output layer a sigmoid

one. The MLP is a function of 𝝎𝑜 only, which is a common pa-

rameterization for representing indirect illumination in real-time

rendering [Akenine-Mller et al. 2018]. In addition, the parameter 𝝁
is the spatial Gaussian center, and the learnable l is a shared latent

vector defined in Sec. 4.2. We apply 4-band positional encoding to 𝝁
and 𝝎𝑜 . Finally, we evaluate Ψ to color each spatial Gaussian, and

splat into a residual image.

4.4 Training
Loss.We use the loss function from [Kerbl et al. 2023], defined as

follows:

L = (1 − 𝜆)L1 + 𝜆LD−SSIM . (9)

Here L1 is the L1 image loss, LD−SSIM is the sum of SSIM [Wang

et al. 2004] of each difference image between an input photograph

and our corresponding rendering, and 𝜆 = 0.2 in all experiments.

Note that we do not impose any regularization on intermediate

results/components. We find it sufficient and elegant to use the

above end-to-end image loss for high-quality relighting.

Initialization.We initialize geometry properties of spatial Gaus-

sians, following vanilla GS. For an angular Gaussian, we randomly

sample 𝜎𝑧 from [0.13, 0.69], and set 𝜎𝑥 = 0.5 and 𝜎𝑦 = 1.0. Both

𝜌𝑑 and 𝜌𝑠 are initialized as (1, 1, 1), and each 𝛼 is set to 0.5. The

local/shading frame of each spatial/angular Gaussian is initialized

to align with the axes in the world space.

Training Strategy & Details. To reduce the probability of get-

ting stuck with an undesired local minimum and to increase robust-

ness in practice, we use a two-stage training strategy to gradually

increase the degrees of freedom. First, we limit the appearance func-

tion to be the Lambertian term only, and train for 15K iterations.

We find that the shading frames converge stably in this stage. Next,

we use the full appearance function with specular reflections, and

train for 100K iterations. In all experiments, we employ the Adam

optimizer with a momentum of 0.9. The learning rate varies with

different parameters, similar to [Kerbl et al. 2023]. For 𝜌𝑑 and 𝜌𝑠 ,

the learning rate is set to 0.01. For angular Gaussians, we use a fixed

rate of 0.01 before 40K iterations, and exponetially decay it to 0.0001

at 90K, and fix it afterwards.

4.5 Rendering
For a given view and a point light, the rendering process with our

representation is described in the beginning of Sec. 4. To support a

directional light, we switch from perspective projection to ortho-

graphic one in the shadow splatting process. Furthermore, rendering

with an environment light is implemented as a linear combination

of the results under a number of sampled directional lights.
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5 RESULTS & DISCUSSIONS
All experiments are conducted on a workstation with dual AMD

EPYC 7763 CPUs, 768GB DDR4 memory and an NVIDIA GeForce

RTX 4090 GPU. It takes 40-70 minutes to train our representation

(120K-750K spatial Gaussians and 8 basis angular Gaussians), whose

rendering speed is over 90fps.

We reconstruct objects/scenes with a wide variation in geom-

etry (from solid to fluffy) and appearance (from translucent to

anisotropic) from multi-view point-lit images. Four forms of input

data are tested: (1) rendered images of syntheic NeRF [Mildenhall

et al. 2020]; (2) rendered images of captured results from [Kang

et al. 2019] and OpenSVBRDF [Ma et al. 2023]; (3) captured point-lit

photographs from NRHints [Zeng et al. 2023]; and (4) multi-view

photometric images captured by a professional lightstage. The input

images for (1) and (2) have a spatial resolution of 512
2
, while the

resolution is 512
2
or 1024

2
for (3) and (4).

For comparison experiments, we take the official code of each

method and retrain with the same set of 500-2,000 input images.

For quantitative assessments of reconstruction quality, we compute

PSNR, SSIM, and LPIPS [Zhang et al. 2018] averaged over all test

images. Please also refer to the accompanying video for animated

results with varying view and lighting. For ablation experiments,

please refer to the supplemental material, as the space of the main

paper is limited.

5.1 Results
Synthetic. Fig. 11 and Fig. 9 show our reconstruction results from

rendered images of synthetic/captured subjects. For each subject, we

use 2,000 training images and 400 test ones, with randomly sampled

view and point light. Translucent exhibits complex subsurface

scattering; AnisoMetal and Drums contain strong anisotropic ap-

pearance; FurBall has a fuzzy geometry; and Lego contains com-

plex occlusions and shadows. In addition, MaterialBalls, Tower,

Fabric, Cup and Egg show complex, spatially-varying specular re-

flections. In all cases, we successfully reconstruct a wide variety of

challenging shapes and appearance with our representation.

Captured. In Fig. 6 and Fig. 9, we generate realistic novel lighting-
and-view synthesis results from the data of [Zeng et al. 2023], ac-

quired with a handheld camera and a smartphone with a flash.

Exactly the same training and test data from their paper are used.

Cup-Fabric consists of translucent materials (cup), and isotropic

(balls) and anisotropic reflections (fabric); Pixiu shows strong sub-

surface scattering and self-occlusions; Fish ,Cluttered and Cat

contain intricate details, like shadow and glint (ground-plane) and

complex appearance (fur). Pikachu includes glossy highlights and

considerable self-occlusions.

In Fig. 5, we reconstruct frommulti-view photometric photographs,

captured with a professional lightstage with 24,576 LEDs and 2 cam-

eras, similar to [Kang et al. 2019]. For each subject, we use 2,000

training images and 400 test images. Zhaojun and Boot contain

furry geometry and complex glinty/anisotropic appearance; Fox

has highly complex occlusions and reflections on grass-like ground

and the hair; Li‘lOnes is a doll with challenging parts like long

hair, which often requires special, separate handling in existing

work [Saito et al. 2023]. Container and Nefertiti include highly

specular reflections with complex spatial variations. For all these

highly challenging cases, we demonstrate high-quality reconstruc-

tions with a unified representation.

Fig. 4. Visualization of the basis angular Gaussians and the spatial distribu-
tions of corresponding weights. Each image shows the spatial distribution
of the weight for a particular basis angular Gaussian, which is color-coded
in the bottom-left corner. A brighter pixel indicates a larger weight.

Visualizations. In Fig. 8, we visualize the components of the

pipeline, for a better understanding of what is going on under the

hood. Note that the intermediate results demonstrate decent qual-

ity/decoupling from each other, despite that we do not impose regu-

larization/constraint on any of them, unlike themajority of GS-based

work. This shows the elegance of our simple, end-to-end image loss.

In addition, Fig. 4 visualizes the basis angular Gaussians and the

spatial distributions of corresponding weights (via splatting) of the

same scene.

5.2 Comparisons
In Fig. 10, we compare with Neural Radiance Transfer Fields [Lyu

et al. 2022]. Both approach are trained with the same set of 2,000

directional-lit images. Our results show higher-quality shadows

and specular reflections than theirs. Moreover, due to the surface-

based appearance representation, they cannot work well on fuzzy

geometry like FurBall.

Fig. 9 compares with NRHints [Zeng et al. 2023], the state-of-

the-art relightable implicit representation. We can reconstruct the

anisotropic highlights in Drums and the specular reflections on the

floor of Fish, which their approach struggles with. For Fur, Lego

and Cat, they fail to reproduce many of the original spatial details,

although they sometimes achieve a higher score than ours with

the blurry reconstructions. Compared with NRHints, we obtain

higher-quality or comparable results, and more than an order of
magnitude higher performance both in training (40-70min vs. 15

hrs) and rendering (90fps vs. <1fps) on the same workstation.

In Fig. 7, we compare with OSF [Yu et al. 2023], one state-of-the-

art method for reconstructing sub-surface scattering appearance,

on Translucent. While not explicitly modeled, scattering effects

are faithfully recovered with our representation. In comparison, the

lack of self-occlusion handling and accurate surface reflectance in

OSF leads to a lower-quality result.

In Fig. 12, we compare with GS based/NeRF-like relighting meth-

ods, which take images lit with unknown environment lighting as

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.
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Ground-Truth Ours Ground-Truth Ours Ground-Truth Ours

Zhaojun: 0.9321 | 32.08 | 0.1071 Fox: 0.9225 | 34.21 | 0.0745 Boot: 0.898 | 28.84 | 0.1013

Li’lOnes: 0.9809 | 38.61 | 0.0182 Container: 0.9745 | 36.65 | 0.016 Nefertiti: 0.956 | 36.58 | 0.0434

Fig. 5. Our relighting results on captured data from a professional lightstage. For each pair of images, the left one is the ground-truth photograph, and the
right is our result. Average errors in SSIM, PSNR and LPIPS are reported at the bottom.

Ground-Truth Ours Ground-Truth Ours Ground-Truth Ours

Pikachu: 0.9676 | 32.39 | 0.0666 Cup-Fabric: 0.9834 | 37.09 | 0.0494 Pixiu: 0.9428 | 30.82 | 0.0816

Fig. 6. Our relighting results on captured data from [Zeng et al. 2023]. For each pair of images, the left one is the ground-truth photograph, and the right is
our rendering result. Average errors in SSIM, PSNR and LPIPS are reported at the bottom.

Ground-Truth Ours [Yu et al. 2023]

SSIM | PSNR | LPIPS 0.9740 | 32.34 | 0.0318 0.9378 | 26.09 | 0.0508

Fig. 7. Comparison with [Yu et al. 2023]. From the left to right, the ground-
truth, the results of our approach and [Yu et al. 2023], respectively. Average
errors in SSIM, PSNR and LPIPS are reported at the bottom of related images.

input, including GaussianShader [Jiang et al. 2023], GS-IR [Liang

et al. 2023b], Relightable 3D Gaussian [Gao et al. 2023] and Tenso-

IR [Jin et al. 2023]. For these methods, we train with the same set

of 2,000 images rendered with an environment map, and test under

a different one. To be as fair as possible, the same ground-truth

environment map is supplied to all alternative methods as input dur-

ing training; our approach uses the same number of point-lit input

images; Another test environment map is used for relighting. Our

quality clearly surpasses alternative approaches in all cases. This

is not surprising: state-of-the-art relighting techniques (e.g., [Zeng

et al. 2023]) take images with known lighting as input, rather than

with unknown environment lighting, to produce high-quality re-

sults.

6 LIMITATIONS & FUTURE WORK
Our work is subject to a number of limitations. First, we do not

consider transparent materials, such as glass or gems. It will be

interesting to replace the MLP Ψ with an explicitly modeling of

other light transports like refraction or internal reflection. More-

over, under certain lighting/view conditions, our shadows are not

as crisp as, e.g., using a mesh-based representation for geometry.

Also for extremely high-frequency anisotropic appearance, the re-

constructed highlights might blink. The main cause for both cases is

the insufficient granularity of spatial Gaussians. We are intrigued to

develop more advanced density control method, as well as establish

additional direct gradient pathway(s), to solve this problem.

In the future, it is promising to search for the optimal acquisition

conditions (i.e., view/lighting) for our representation to reduce the

number of input images and improve the reconstruction quality at

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.
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the same time, by exploiting, e.g., the highly efficient learned illumi-

nation multiplexing [Kang et al. 2021]. While the images we capture

with a professional lightstage is already useful as a benchmark for

future research, it is desirable to build a large-scale database in the

spirit of [Ma et al. 2023] to facilitate generative tasks like [Poirier-

Ginter et al. 2024; Zeng et al. 2024] based on our representation.
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Rendering Result Diffuse Albedo Specular Albedo Normal Shadow Function Other Effects (×2.5)

Fig. 8. Visualization of various components of our representation. From the left image to right, the final rendering result, diffuse albedo 𝜌𝑑 , specular albedo
𝜌𝑠 , normal n, shadow function Φ and other effects Ψ (×2.5 for a better visualization). An image gamma of 1 is used for this figure.

Drums FurBall Lego Fish Cluttered Cat

G
r
o
u
n
d
-
T
r
u
t
h

O
u
r
s

0.9714 |30.45 | 0.0276 0.9669 | 35.34 | 0.0534 0.9511 | 30.19 | 0.0468 0.9252 | 31.13 | 0.0866 0.9521 | 30.82 | 0.0696 0.8981 | 26.43 | 0.1381

N
R
H
i
n
t
s
[
Z
e
n
g
e
t
a
l
.
2
0
2
3
]

0.9745 | 29.88 | 0.0294 0.9522 | 35.06 | 0.0777 0.9583 | 29.90 | 0.0393 0.9140 | 31.28 | 0.1137 0.9280 | 29.61 | 0.0879 0.8560 | 27.34 | 0.1667

Fig. 9. Comparisons to [Zeng et al. 2023]. From the top row to bottom, the ground-truth, results of our approach and [Zeng et al. 2023], respectively. From the
1st column to 3rd, synthetic data from [Mildenhall et al. 2020]; from the 4th column to the last, captured data from [Zeng et al. 2023]. Average errors in SSIM,
PSNR and LPIPS are reported at the bottom of each related image.

Ground-Truth Ours NRTF [Lyu et al. 2022] Ground-Truth Ours NRTF [Lyu et al. 2022]

SSIM | PSNR | LPIPS 0.9568 | 27.83 | 0.0399 0.9494 | 26.89 | 0.0486 SSIM | PSNR | LPIPS 0.9686 | 30.43 | 0.0275 0.9606 | 27.09 | 0.0391

Fig. 10. Comparisons to [Lyu et al. 2022]. From every 3 consecutive images, the ground-truth, result with our approach and [Lyu et al. 2022], respectively.
Average errors in SSIM, PSNR and LPIPS are reported at the bottom of each related image.
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Ground-Truth Ours Ground-Truth Ours Ground-Truth Ours

Translucent: 0.9740 | 32.34 | 0.0318 MaterialBalls: 0.9545 | 28.04 | 0.0628 Tower: 0.9913 | 32.96 | 0.0150

Fabric: 0.9812 | 31.15 | 0.0317 Cup: 0.9905 | 32.74 | 0.0203 Egg: 0.9833 | 31.84 | 0.0257

Fig. 11. Our relighting results on synthetic data/rendered images of captured data [Kang et al. 2019; Ma et al. 2023; Zeng et al. 2023]. For each pair of images,
the left one is the ground-truth, and the right is our result. Average errors in SSIM, PSNR and LPIPS are reported at the bottom.

Ground-Truth Ours GaussianShader GS-IR Relightable 3D Gaussian TensoIR

H
o
t
d
o
g

SSIM | PSNR | LPIPS 0.9712 | 36.47 | 0.0342 0.9439 | 29.25 | 0.0600 0.9289 | 29.13 | 0.0816 0.9526 | 30.22 | 0.0555 0.9590 | 31.68 | 0.0466

L
e
g
o

SSIM | PSNR | LPIPS 0.9651 | 32.06 | 0.0302 0.8964 | 24.33 | 0.0834 0.9230 | 27.66 | 0.0550 0.9463 | 30.31 | 0.0446 0.9540 | 30.96 | 0.0356

M
a
t
e
r
i
a
l
B
a
l
l
s

SSIM | PSNR | LPIPS 0.9459 | 28.01 | 0.0508 0.8900 | 24.31 | 0.0937 0.8756 | 23.41 | 0.0969 0.9045 | 25.34 | 0.0848 0.9026 | 25.05 | 0.0765

Fig. 12. Comparisons with approaches using environment-lit input images. For images from the left column to right in each row: the ground-truth, rendering
results of our approach, GaussianShader [Jiang et al. 2023], GS-IR [Liang et al. 2023b], Relightable 3D Gaussian [Gao et al. 2023] and TensoIR [Jin et al. 2023],
respectively. Average errors in SSIM, PSNR and LPIPS are reported at the bottom of each related image.
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